

Approved by All India Council for Technical Education (AICTE), Delhi Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

Department of Electronics & Telecommunication Engineering

AY 2017-18 (Part-II)

Subject: POWER ELECTRONICS

Class- TE A & B

Question Bank

UNIT 1_Power Electronics Devices

a	~					
Sr.	Question	Marks	Year			
No						
	What would happen if positive gate voltage is given to reverse blocking thyristor? Justify.	5	ND16			
1	Why Ig ceases, ones the SCR comes into conduction? Justify.	5/5	MJ15/ND1			
			4			
2.	Diode reverse recovery characteristics	5	ND 16			
3	As gate current increases break over voltage decreases of an SCR. Justify	7	ND16			
4	For an SCR the gate cathode characteristics has source voltage of 15 straight line slope of	8/7/8	ND16/MJ1			
4	130 & allowable gate power dissipation of 0.5 watt, compute the gate source resistance		6/ND15			
5	With the help of structure & VI characteristics of DIAC & explain various operating modes	7	ND16			
2	of TRIAC					
	*The trr = 5 μ sec & di / dt = 80 A / μ s. <u>If SF = 0.5</u> determine	8/7/8	ND16/MJ1			
C	a) QRR , b) IRR		6/ND15			
0	*The trr = 3μ sec & di / dt = $30 \text{ A} / \mu$ s. determine	5				
	a) QRR , b) IRR		MJ 15			
7	With the help of neat circuit diagram explain structure of IGBT & VI characteristics	7	MJ 15			
	Bipolar transistor has current gain β =40. The load resistance RL=10 Ω , Vcc=130 V, input	8	MJ15			
	voltage to base circuit Vb=10 V,Vces=1.0 V & Vbes=1.5 Calculate					
0	1. Value of Rb for the operation in saturated state					
8.	2.Value of Rb for an overdrive factor of 5					
	3.Forse current gain					
	4.Power loss in transistor					
9.	Short Note: Gate characteristics of SCR	5	MJ16			
	Explain dynamic characteristics of SCR	7	ND14			
10	With the help of neat circuit diagram explain structure of BJT & VI characteristics	8/5	MJ16/ND1			
			5			

11	With the help of neat circuit diagram & waveform explain VI characteristics of MOSFET	7	ND15
	With the help of neat circuit diagram & waveform explain line synchronized UJT triggering	8	MJ16
	circuit		
12	State the rating & application of IGBT	5	ND14
	Design UJT firing circuit with following data.	8	ND14
13	η =0.7, Ip=50 μ A ,Iv=5mA, Vv=1V,C=0.1 ,Vbb=15 V leakage current of UJT with emitter		
	open =2mA.		
	A relaxation oscillator using UJT is to be designed for triggering on SCR the UJT has	8	MJ15
	following data.		
14	η=0.7, Ip=0.5mA ,Vp=15 V,Iv=2mA, Vv=0.8V,Rbb=6K Ω ,normal IL with emitter open		
	=3mA,C=0.05µF Compute the values of charging resistor & external resistor connected in		
	base circuit		
15	What is commutation? Why it is necessary in SCR	5	MJ16
16	Explain Class B commutation techniques with neat circuit diagram & waveform	7/8	MJ15/MJ1
10			6
17	Explain Class D commutation techniques with neat circuit diagram & waveform	7	ND15

Approved by All India Council for Technical Education (AICTE), Delhi Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

Department of Electronics & Telecommunication Engineering

AY 2017-18 (Part-II)

Subject: POWER ELECTRONICS

Class- TE A & B

Question Bank

UNIT 2.Controlled Rectifier

Sr.No	Question	Marks	Year
1	Explain the concept of "quadrant of operation" of converter?	5	ND 14
2	Explain the operation of 3-phase full converter with R load and $\alpha < 60$	7	ND 14
3	*Explain the operation of 3-phase full converter with \mathbf{R} load with neat voltage & current waveform	7	ND16
4	Explain the operation of 3-phase full converter with RL load with neat voltage & current waveform	8	ND15
5	A 3-phase full converter feeds power to a resistive load of 10 ohm for firing angle of 30. The load takes 5KW power. Find the magnitude of per phase input supply voltage.	8	ND 14
6	What is dual converter? Explain the operation of circulating current mode dual converter.	7	ND 14
7	Find the peak value of circulating current of 3-phase dual converter given that rms supply voltage=220v, max. frequency=50Hz, α 1=60 & α 2=120	8	ND14
8	Calculate peak value of circulating current for 3 phase dual converter for the given data, per phase supply RMS voltage =230V, ω =315 rad/sec, L=12mH, α 1=60 & α 2=120	8	MJ15
9	Explain the effect of freewheeling diode on performance of 1 phase converter.	8	Dec 13
10	What is ideal dual converter? Explain.	5	May 14
11	Explain various performance parameter of 1 Phase converter.	7	ND 15
12	Explain 1 phase full converter with R load with neat ckt diagram & waveform	7	MJ16
13	 *Draw the circuit diagram of single phase full converter. Explain its working for RL load with voltage and current waveforms. *With the help of circuit diagram & waveform Explain operation of rectifier & inverter 	7	May 14
1.4	mode of single phase full converter with RL.	7	MJ15
14	A single phase rull converter with KL load having L=0.5mH, K=0.50nm, E=10V. The	ð	way

	input voltage is 120 V (rms) at 60 Hz. Calculate: 1) Load current at α=60. 2)		14
	Average thyristor current. 3) RMS thyristor current. 4) RMS input current.		
	A 1-Ø 230V, 1KW heater is connected across 1-Ø 230V,50 Hz supply through an	8	ND16
15	SCR.For firing angle delays of 45° & 90° , Calculate the power absorbed in the heater		
	element.		
-	A 1 phase Full converter operated from 220v ,50Hz supply gives an output voltage of	8	ND15
16	180V at no load .When loaded with a constant output current of 10 A. The overlap angle		
	is found to be 6^0 Compute the value of Inductances in Henneries		
17	Explain the effect of source inductance Ls on performance of 3 phase converter	7/8	ND16/
17			MJ16
10	Explain the effect of source inductance Ls on performance of 3 phase converter. Derive	8	May
18	the equation for voltage drop due to Ls.		14
	A 3 phase full controlled converter is operated from 3 phase a.c. supply with per phase	8	May
10	rms voltage=230v at 50Hz. The load resistance is 10 ohm. The average output voltage		14
19	must ve 490% of maximum possible output voltage. Calculate: 1) Delay angle.2) RMS &		
	avg .load current.3) RMS & avg.scr currents.		
20	Derive an expression for output voltage of 3 phase fully controlled bridge converter.	8	Dec 13
21	A 3 phase converter feeds power to a resistive load of 10ohm, for firing angle delay of 50,	8	Dec 13
21	the load takes 5KW. Find the magnitude of per phase input supply voltage.		
22	With help of circuit diagram explain the operating principle of dual converter.	8	June
22	Differentiate between two modes of dual converter.		13
	A 1 phase dual converter operated from 230v, 50Hz supply & the load resistance is	8	June
23	20ohm. The circulating inductance is Lc=25mH, delay angles are $\alpha 1=60$ and $\alpha 2=120$.		13
	Calculate a peak circulating current to converter.		
			1

Approved by All India Council for Technical Education (AICTE), Delhi Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

Department of Electronics & Telecommunication Engineering

AY 2017-18 (Part-II)

Subject: POWER ELECTRONICS

Class- TE A & B

Question Bank

UNIT-3 A.C. Voltage Controller			
Sr. No	Question	Marks	Year
	Explain ON-OFF control method.	5/87/5/5	MJ14/ND16/
1	Explain Integral cycle control method		ND15/MJ15/
			MJ16
	Explain phase angle control method of ac voltage controller with neat circuit	7	MJ15
2	diagram & waveform		
3	Explain single phase a. c. voltage controller with RL load.	7/7	May
			14/MJ16
4	Explain the operation of phase angle control with neat circuit diagram and wave	8	Dec 14
4	forms. Also derive the expression for average output voltage and rms output voltage.		
	A single phase full wave ac voltage controller feeds a load of 200hm with an input	7	Dec 14
5	voltage of 230V,50Hz. Firing angle for both SCRs is 45, calculate: 1) RMS value of		
	output voltage.2) Load power and input P.F. 3)Average and rms current of SCRs		
	For a single phase a.c. voltage controller feeding resistive load, show the power	8	June 13
6	factor is given by:	8	MJ15
	$P.F.=[1/\pi(\pi-\alpha)+\sin 2\alpha/2]^{1/2}$		
7	What is cyclo converter? Explain.	5	Dec 14
8	Short note :Step Down cycloconverter	5/5	ND16/ND15
9.	Define cycloconverter & explain step-up cycloconverter	5	MJ15/MJ16
10	Explain single phase a.c. voltage controller with R load.	8	Dec 13
11	Describe the operation of 1phase to 1phase cycloconverter.	8	Dec 13
12	What is cycloconverter? What are the types? Explain advantages, disadvantages of	8	June 13
12	cycloconverter. State factors affecting the harmonics in cycloconverter.		
13	Write short notes on: 1) Reduction of harmonics in cycloconverter.	6*2=12	June 13
	2) Effect of source inductance on converter.		

Approved by All India Council for Technical Education (AICTE), Delhi Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

QUEST FOR EXCELLENCE Department of Electronics & Telecommunication Engineering

AY 2017-18 (Part-II)

Subject: POWER ELECTRONICS

Class- TE A & B

Question Bank

UNIT-4-INVERTERS Sr. Question Marks Year No 1.Short notes :Series inverter ND16/MJ16 1 5/5/5 2 Explain bridge inverter 5 ND16 3 Explain operation of parallel inverter 7 ND14 With neat circuit diagram & waveform explain working of 3 phase 120^o conduction 8/7/7 ND 4 mode bridge inverter. 15/16/MJ15 With neat circuit diagram and w/f .explain working of 3 phase 180° conduction mode MJ16/ND14 8/7 5 bridge inverter. A 1-phase full bridge inverter is operated from 48v battery and a resistive load of 10 7 ND16 ohm. Determine 1)O/P voltage of fundamental frequency 6 2)O/P RMS power 3) Thyristor rating Explain various voltage control techniques of an Inverter. 8/5/7 ND16/MJ15 7 /16 Calculate output frequency of series inverter with L=10 mH, MJ15/MJ16/ 8/7/8 8 $C=0.1\mu F$ & RL=500 Ω , Toff=250 μ sec, Tq=25 μ sec ND15 9 With the help of neat circuit diagram & waveforms, explain 1-phase series inverter 8 MJ15 Explain use of feedback diode in inverters 7 ND14 10 Find the output frequency and attenuation factor of a series inverter. Circuit with 8 ND14 11 following data. L=10mH & c= $0.14\mu f$ & RL=400 Ω , Toff=0.2msec,

Approved by All India Council for Technical Education (AICTE), Delhi Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

QUEST FOR EXCELLENCE Department of Electronics & Telecommunication Engineering

AY 2017-18 (Part-II)

Subject: POWER ELECTRONICS

Class- TE A & B

Question Bank

UNIT-5_CHOPPER

Sr.No	Ouestion	Marks	Year
	Explain current commutated chopper with neat circuit diagram, and waveform	7/7	ND16/ND1
1	Explain current commutated enopper with near encart angruin, and waverorm	,,,,	5
	The dc chopper has a resistive load of $\mathbf{R} = 10$ ohm $1/n$ dc voltage is 220 v. When the	8/7	5 ND16/M11
	chopper switch remains on Its ON stage voltage drop is 2V. Chopper frequency is	0/ /	6
2	1KUz If duty cycle is 50%. Determine 1) Average O/D Load Voltage 2) DMS O/D		0
	L and Waltage 2) Effective I/D Desistence		
	Load Voltage 3) Effective I/P Resistance	7	NID14
	The dc chopper has a resistive load of $R=10$ Ohm, $1/p$ dc voltage is 220v. When the	/	ND14
3	chopper switch Remains on. Its On-stage voltage drop is 2V. Chopper frequency is		
	1KHz. If duty cycle is 30%. Determine. 1) Average O/P Load Voltage 2) RMS		
	O/P Load Voltage 3) Effective I/P Resistance		
	With the help of neat circuit diagram, derive the expression for minimum &	7/8/8/8	ND16/MJ1
4	maximum load current of class –A Chopper.		6/ND14/N
			D15
5	Explain class 'C' chopper	5	ND16
6	Explain class 'D ' chopper	5	ND15
7	Fourth Quadrant chopper	5/5/5	MJ15/16/N
7			D15
0	Explain the voltage commutated chopper with neat circuit diagram & w/f.	7/8	MJ15/MJ1
8			6s
	For type A chopper Vs=220v,F=500Hz,Ton=800uSec,R=1Ω,l=1mH,E=72v.	8/8	MJ15/ND1
9	Find 1.load current IL is continues or not		5
	2. Compute the Imax & Imin.		
10	Explain various control strategies used for obtaining variable o/p voltage from DC	8/7	MJ15/ND1
10	chopper.		5
11	Explain various voltage control technique in chopper.	5	ND14
12	Explain step up chopper, derive expression for its o/p voltage	8	ND14

Approved by All India Council for Technical Education (AICTE), Delhi Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

QUEST FOR EXCELLENCE Department of Electronics & Telecommunication Engineering

AY 2017-18 (Part-II)

Subject: POWER ELECTRONICS

Class- TE A & B

Question Bank

UNIT 6_Power Electronics Applications				
Sr.No	Question	Marks	Year	
1	Explain flasher circuit with neat circuit diagram	7/7/7	MJ15/16/ND15	
2	Explain servo controlled voltage stabilizer	8	MJ15	
3	Short note :HF heating	5/5	MJ16/ND16	
4	Explain time delay circuit with neat waveform & circuit diagram	8/7/7	MJ16/	
-			ND14/ND16	
5	State the principle of Induction heating. What are its application	5	ND14	
6	What is power module explain	5	ND14	
7	Explain temp. controller with neat circuit diagram & Waveform	8/8	ND15/ ND16	